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A new method for calculating eigenvalues and eigenfunctions of elliptic operators is 
presented. An interior constraint is used to allow reliable convergence to any desired eigen- 
function. The method has been implemented in a portable Fortran computer program which 
features adaptively generated triangulations in two dimensions, and which uses multi-level 
iteration. The program has been used to calculate effkiently eigenvalues and eigenfunctions on 
singly- and multiply-connected regions, with internal and boundary singularities. 

1. INTRODUCTION 

We present a method for numerical calculation of eigenfunctions and eigenvalues 
of self-adjoint elliptic operators. The method has been implemented in a portable 
Fortran computer program. Important features of the method include reliable 
convergence to any eigenvalue and its eigenfunction. No initial guess at the eigen- 
function is needed. 

The method has been implemented with a general-purpose two-dimensional elliptic 
solver which uses linear finite elements on triangles. Any general elliptic solver could 
be used, with only minor modifications. Our package provides interactive graphical 
display of eigenfunctions and triangulations. 

Our package generates a sequence of approximations to an eigenfunction. Each 
approximation is a finite element solution on a triangulation. Errors in each approx- 
imate eigenfunction are estimated and used to generate a refined triangulation for the 
next approximation. 

Each eigenvalue and its associated eigenfunction are found using a formulation 
which requires minimizing a one-parameter function. We have found this to be more 
reliable than the widely recommended method of inverse iteration. 
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2. FORMULATION 

We wish to solve the two-dimensional self-adjoint eigenvalue problem 

-v ’ (UVU) + qu = /lpu in &?, (1) 

u=o on ail,, 

au 
-0 an- 

on aa,=ai2-af-2, 

for a few eigenvalue-eigenfunction pairs A, u. The coefficients a, q, and p can be 
functions of x and y. We assume a > 0 and p > 0 in 32. Boundary conditions are 
piecewise homogeneous Dirichlet and Neumann; the Neumann portion is optio~al~ 
The elliptic solver we use restricts the domain D to be a two-dimensional bounded 
region, with boundary X! consisting of straight line segments and circular arc 
segments. 

Problem (1) has a countable set of real eigenvalues li, d, <A, < 1, < .I* 7 each 
with an associated eigenfunction ui. The ui may be multiplied by any scale factors; 
we assume the normalization JJ ufp dx dy = 1. If di + dj, ui and uj are orthogonal 
[II: 

I uiujp dx dy = 0, A, #Aj. 

If di = Aj, new linear combinations of ui and uj can be redefined that are ~~ho~o~al. 
We assume this, so that finally 

J-f uiujp dx dy = 0, i#j, 

ZZ 4 i =j. 

Generally only one or a few of the first eigenvalue-eigenfunction pairs are desired. 
Let S be the space of functions which are continuous functions of x and y, have 

piecewise continuous first derivatives, and obey the Dirichlet boundary condition on 
82,. The Rayleigh quotient R(v) is defined for any u in S. 

The eigenfunctions of (1) are complete for functions in S, so we may expan 
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After integrating by parts, using the boundary conditions and the orthonormality of 
the eigenfunctions, we obtain 

‘00 

I 

cc 

R(v) = 2 a& 2 a:. 
k=l k=l. 

Therefore A, = minvcS R(v), and 1, = R(u,) for all k. 
One way to approximate d1 and U, is to choose a Set of basis fUnCtiOnS #k, 

k = 1, 2 ,..., N, and let 

An “optimal” set of coefficients {ck} may be found by minimizing R(v,) with respect 
to the NC,?. The coefficients are optimal in the sense that they are the set giving the 
best approximation to d1 for the given set of basis functions. The quality of the 
approximate eigenvalue and eigenfunction depends upon N and upon the choice of 
the {#k}. A poor set of basis functions will necessitate a large N to obtain satisfactory 
accuracy, especially in the eigenfunction. 

Similar results hold for higher eigenvalue-eigenfunction pairs, but the trial function 
v must obey orthogonality conditions as well as the Dirichlet boundary condition. 
The minimum condition, 

;lj= ~~ R(V), 

holds only if ls pvjvk dx a$ = ak = 0 for k = 1, 2 ,..., j - 1. 
In the remainder of this paper, we let the basis functions #k(~,~) be linear finite 

elements on triangles, Let 0 be triangulated, with vertices (xk, yk), k = 1, 2,..., N. 
Then #k(~k, yk) = 1, #,(xj, vj) = 0 if j # k, and #k is linear on each triangle. Only 
basis functions obeying the Dirichlet boundary condition are included. We denote 
finite element superpositions by a superscript h. Let 

Uh(XP Y> = 2 Pk #ktxY Y) 
k=l 

and use the standard finite element formulation of (l), as in [2]. This gives a matrix 
eigenvalue problem of the form 

Ab = LhBb, 

where b is an N-vector (‘,8,, /I2 ,..., &)‘, and A and B are N X N sparse symmetric 
matrices, typically with 5 to 9 nonzero elements per row. A is positive definite. This 
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problem has N real eigenvalues A:, A: < ,I!j < +a. , each with an associated ei~e~v~c~~~ 
ci. The orthonormality of the ci is 

c;Bcj = 0, i#j, 

1, i =j. 

The lower of the df will approximate eigenvalues of (l), but the higher ones will not. 
Since Uh is in S, 

a, ,<a:. 

The Rayleigh quotient for the matrix problem is 

bTAb 
RhW = by-Bb . 

An argument similar to the one given for the continuous problem shows that 

,I! = rn: Rh(uh) = Rh(b,) 

and 

Ah, = Rh(b,) for all k. 

The above argument is valid for other elliptic solvers, although the structure of the 
matrices A and B may be different. 

3. ADAPTIVE TRIANGULATION 

The error i Id, - ,$j 1 depends on N and on how well the triangulation is suited to 
the eigenfunction uk. In general, an appropriate triangulation is not known before the 
form of the eigenfunction is known. Our programs generate an appropriate 
triangulation adaptively, in the course of calculating an approximate eigenval~e and 
eigenfunction. 

We start with a coarse triangulation, denoted A,, of 52. This initial triang~l~io~ 
must be fine enough to resolve the desired eigenfunction, but need not be tine ~~o~~h 
to provide an accurate representation of the eigenfunction. The adaptive aI~orit~m is 
as follows: 

For 112 = I to max 

(1) On A,, calculate finite element matrices A, and B,, each of order N,. 
(2) Solve A, b = LB,b for the desired eigenvalue 1” and eigenvector bm. If 

I Except for k = 1, it is possible that u: ‘corresponds to uj and j # k. We ignore this minor corn- 
plication. 



74 BLUE AND WILSON 

m > 1, I”‘-’ and b”‘-’ will be good initial approximations. Two iterative methods will 
be discussed for finding A” and b”, inverse iteration and a fixed-point method. One 
step of each iterative method requires generating and solving a system of element 
equations. We solve these by a multi-level iteration, to be discussed later. The 
program to do this has evolved from a program of Bank and Sherman [3]. ’ 

(3) Estimate an error associated with each triangle. The method of estimation 
is similar to that in [4] and is described in [3]. 

(4) Produce a finer triangulation, d,+l, by refining the triangles with the 
largest errors. Each is divided into four similar triangles by connecting the midpoints 
of the sides. 

If the triangulations were uniform, with largest triangle side h, = h, 2’ -m, then the 
maximum errors in 1” and in urn are 0(/z:). For nonuniform triangulations, we expect 
the errors to be 0(1/N,) if the refinement is reasonable. This behavior can be used to 
estimate the errors, using two or more successive approximations on triangulations. 
In practice, one step of Richardson extrapolation of the eigenvalues seems useful for 
improving the approximate eigenvalue and for estimating the error in the eigenvalue. 

4. MULTI-LEVEL ITERATION 

At level m of the adaptive process described in Section 3, when finding the approx- 
imate eigenvalue L”, a system of linear equations must be solved. Each row of the 
system corresponds to one vertex; the number of nonzero entries in the row is 1 plus 
the number of triangles meeting at the vertex. Since the method of refinement does 
not increase this number, the matrices are increasingly sparse as m increases. 

Standard sparse matrix techniques could be used to solve the linear equations, but 
a multi-level iteration generally is faster [5] and requires less computer storage than 
direct solution. We can take advantage of having several sets of linear equations, 
each modeling the same cntinuous problem, on grids which are nested triangulations 
of the domain. 

Iterative methods are common [6, 71 for solving single systems of equations arising 
from partial differential equations. Their convergence rate may be qualitatively 
understood by considering a Fourier expansion of the error in an approximate 
solution. The convergence rate, the factor by which each Fourier component of the 
error is multiplied at the end of one iteration, is strongly dependent on the 
component. For the highest components, the rate is typically 0.5; for the lowest 
components, the rate is 1 - 0(/z’), where h is the local mesh size [5 1. Standard 
iterative methods therefore damp out the most oscillatory components of the error 
quickly, and damp out the slowly varying components slowly. Final convergence is 
governed by the slowly varying components, and is slow. 

Multi-level iterations use the linear equations on all of the grids to solve the linear 
equations on the finest grids. The most oscillatory error is damped quickly by 
iteration on the finest grid. The next most oscillatory errors are damped by iteration 
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on the next coarser grid using the linear equations defined on that grid; these Fourier 
components are the most oscillatory ones on the grid, and so are damped out quickly. 
The next most oscillatory errors can be damped out quickly on the next coarser gri 
and so on. In this way computer time is saved because few of the iterations are done 
on the finest grid. 

A great variety of multi-level iterative schemes is possible; the reader is referre 
[ 3 ] for details of the scheme used in our calculations. 

5. INVERSE ITERATION 

Inverse iteration [8--lo] is the standard method for calculating a few eigenvectors 
and eigenvalues of matrices. Starting with a guess c,, a sequence c, , c2,“., is 
produced which usually converges to some eigenvector of Ab = /ZBb. 

Given ci 

(normalization), 

pi = AT&A (Rayleigh quotiem). 

Solve for ci+ , : 

(A -,u~,B) c~+I =BCi. 

If ci is close enough to some bj, then the sequence of c’s converges cubically to 
and the sequence of ,u’s converges cubically to A,. 

There are two problems with inverse iteration. The obvious one is that the bj to 
which the iteration converges depends on the initial guess co. Convergence to a 
desired eigenvector may not be possible without fairly accurate knowledge of the 
eigenvector. 

The second problem is that when the sequence is converging, the matrices A - ,L+ 
become more and more ill-conditioned with increasing i, since the object is to 
produce a zero eigenvalue of A -p,B. If the linear equations for ci+, are solved by 
Gaussian elimination, the ill-conditioning is not a problem [9]. If the linear eq~atio~§ 
are solved by a multi-level iteration, as described earlier, convergence can be 
intolerably slow, or divergence may occur. This is, in part, because 0 is nearly an 
eigenvalue of (A, - piB,) for the largest m, but 0 is far from being an eigenvalue of 
C41 -PiBl)* 

6. THE INTERIOR CONSTRAXNT METHOD 

If A = p is a specified constant in (l), then (1) has only the solution u = 8, unless A 
happens to be an eigenvalue. In order to avoid the trivial solution, we consider a 
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modified problem. Let (xF, JJ,) be any interior point of 0, and let 9’ be B minus a 
circle of (small) radius’s centered at (x~, y,). On the circle, let u = 1. For small E, the 
solution will approximate the Green’s function, which has a logarithmic singularity at 
(xF, yF). The coefficient of the logarithm will vanish when ,u equals an eigenvalue 
whose associated eigenfunction is nonzero at (x,, JJ~). 

If E is much smaller than the dimensions of the triangulation near (+, yF), the 
finite element formulation can ignore the integrals over the circle. Thus we let (xF, 
yF) be an interior vertex of the triangulation and require that p, = 1. Rather than 
AC =,uBc, we have 

(A’-pB’)c=f. 

The matrices A’ and B’ are the same as A and B except in row I;,fis zero except for 
row F, which is merely the constraint equation & = 1. The above equation is now 
inhomogeneous, and we may obtain a solution for any value of ,u, denoted c(u, F). We 
keep F fixed and use the Rayleigh quotient to define a one-variable function 

Q@> = R %CU, F))- 

For the lowest eigenvalue, 

If ,u = AT, then the auxiliary boundary condition at F only changes the normalization, 
so that 

c(A; 9 8’) = abj 

for some constant, a. Since the Rayleigh quotient is independent of a, Q($) = 1;. 
Therefore. a graph of Q(U) versus ,u, in the vicinity of A:, must look like the part of 
Fig. 1 near ,u = 5. 

For higher eigenvalues, we also have 

if ZL~“(X,, yF) # 0, but there may not be a lo&al minimum of Q(D) at A;. We expand 
C(LL, F) in eigenvectors about bj and expand the coefficients in a Maclaurin series. 
Then to within a normalizing constant we have 

c@, F) = bj + (1; - ,D) 2 a,&) b, + O(Lf - p)* 
k=l 

for some set of functions ak. By inserting this formula into the definition of Q(L), 
using the orthonormality of the eigenvectors, and differentiating, we,find dQ/dp = 0 
atp=.$. . . . 
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FIG. 1. Q(u) vs p for slit membrane, triangulation of Fig. 2. 

At each step of the interior constraint method, the set of hnear equations is 

(A’ -pB’) c=J 

The eigenvalues of A’ - yB’ are in general not equal to /zj” - p. The linear equations 
do not become singular as ,u + ,I.;, and remain easy to solve with multi-level ~t~r~tio~~ 

At the mth stage of the adaptive mesh generation procedure of Section 3, it is 
necessary to find an eigenvalue of AC = ABC, where we have dropped reference to the 
level number m. 

For M = 1, the crudest triangulation, the matrices are small and ~a~ssi~~ 
elimination is fast and accurate using programs from the Yale Sparse Matrix ~~~k~~~ 
(II]. A scan of Q@) vs ,u may be done cheaply in order to isolate the roots of 
Q&) = fi for which aQ/+ = 0. After the roots have been isolated, any reliable one- 
dimensional root finder may be used, and quadratic convergence is easy io obl; 

For m > 1, the eigenvalue from the lower level is a good initial, guess to give to the 
root finder. 

Newton’s method applied to Q@) -P = 0 gives 

p+ 1) - -#) - Qb("> - di' 
Q’@(G) - 1 - 

Sufficiently near a root, Q’ z 0, Newton’s method reduces to resubstitutio~, 

and converges quadratically. 
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For m > 1, the eigenvalue from the lower level is usually a sufficiently good initial 
guess for resubstitution to converge. 

. 
7. AN EXAMPLE 

We illustrate our method with an easy elliptic operator on a difficult domain. 
Another example may be found in [ 121. We solve for eigenvalues and eigenfunctions 
of a vibrating square membrane with side L and with a diagonal slit in it (shown by 
heavy lines in Fig. 2). The equation is -V2u = lu, with u = 0 on the square and 
&L/&Z = 0 on each side of the slit. Without the slit, the eigenfunctions are propor- 
tional to 

mx . 
y mw 

nm = sin 7 sin - L 

with eigenvalues (n” + m’) z2/L2, for n and m positive integers. The eigenvalues and 
eigenfunctions of the slit membrane are not known; except that any I+Y,, with 
@/an = 0 on the slit, such as wl,, is an eigenfunction. 

We start with the uniform mesh of Fig. 2, which has N= 28, plus 16 vertices on 
the square’s boundaries. 

Q@) vs ,U for 4 <,u ,< 8, is shown in Fig. 1, with the mesh of Fig. 2. The first and 
second 1: are 5.1729 and 6.6085. Successive refinements for the first eigenfunction 
yield the meshes of Figs. 3a and 3b; those for the second eigenfunction yield Figs. 

FIG. 2. Initial triangulation for slit membrane. 
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FIG. 3a. First refinement, first eigenfunction. 

FIG. 3b. Second refinement, first eigenfunction. 

TABLE I 

m N 2 Error at(ext) Error 

1 28 5.1129 0.238 1 
2 120 4.9969 0.062 1 4.9433 0.0085 
3 484 4.9508 0.0160 4.9356 0.0008 

581/44/l -6 
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FIG. 4b. Second refinement, second eigenfunction. 

TABLE II 

in N a: I:(ext) 

1 28 6.6085 
2 146 6.1283 6.0144 
3 192 5.9971 5.5807 
4 268 5.925 1 5.7432 
5 472 5.8611 5.7770 
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FIG. 4c. Third refinement, second eigenfunction. 

4a-d. Figure 5 is a view of the second eigenfunction for the fifth mesh. The results for 
L: and nt are summarized in Tables I and II. The true 1, is ~‘/2 z 4.93480. The error 
in 2.: behaves approximately as l/N. Assuming l/N behavior (‘justified only for 
uniform meshes) and extrapolating successive rows, we get LF (ext) in Table I, with 
error as shown in the final column. The true 1, is not known; $ (ext) in Table II 
assumes IIN behavior. 

FIG. 4d. Fourth refinement, second eigenfunction. 
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FIG. 5. Second eigenfunction, triangulation of Fig. 4d. 

8. CONCLUSION 

We have described a method for reliable numerical calculation of eigenvalues and 
eigenfunctions of elliptic operators. Our implementation, using linear finite elements 
on triangles, generates triangulations adapted to the eigenfunction being calculated. 
The program has been used to calculate efficiently eigenvalues and eigenfunctions on 
singly and multiply connected two-dimensional regions, with internal and boundary 
singularities. 
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